NenuFAR Cosmic Dawn project Current status

Florent Mertens (LERMA) NenuFAR User meeting – 17/11/2021

The NenuFAR Cosmic Dawn team: Leon Koopmans (PI), Benoit Semelin (PI), F. Mertens (co-PI), D. Aubert, R. Barkana, J. Bobin, F. Boulanger, B. Cecconi, J. Chardin, A. Doussot, A. Fialkov, H. Gan, S. Gazagnes, B. Gehlot, N. Gillet, J. Girard, V. Jelic, F. Levrier, M. Mevius, P. Ocvrik, A. Offringa, P. Vishambhar, M. Pommier, C. Tasse, H. Vedantham, P. Zarka, S. Zaroubi

Cosmic Dawn / Epoch of Reionization

13.8 billion 8 billion 4 billion 1 billion 0.1 billion 400 thousands The Big Bang Recombination The Dark Age Present Day of first n Reionization ully ionized Neutralize Fully ionized 100 10 1000 Frequency MHz 90 80 70200 190 180 160 150140 130 120110 100 170300 200 [W] 7 100 $\delta T_{\rm b}$ -50-150 mK 50 250 $\delta T_{\rm b} \, [{
m mK}]$ -50-150Global 21-cm signal experiments: EDGES, SARAS 2, LEDA... [**2**]−250 [**X**] $k = 0.1 \,\mathrm{Mpc}^{-1}$ $\delta T_{
m b}^2 \Delta_{21}^2$ Interferometric 21-cm experiments: LOFAR, MWA, SKA, HERA Mesinger & Greig 10 7.08.0 9.0 10.020.025.06.0 12.014.016.018.0Redshift, z

Credit:

Year after Big Bang

Global experiment: a first Detection (?)

New: SARAS3 (global) experiments presented recently new results discarding the presence features observed by EDGES. Still needs to be confirmed.

A challenging experiment

Status of the NenuFAR-CD project

	Semester	Target	Time	Purpose	Official start of
se 1	2019 S2	NCP	18h (324h)	Check systematics, check RFI Initial sky model of the NCP	science phase
Pha	2020 S1	3C196	1.7h (30h)	Polarized emission analysis	Availability of
	2020 S2	NCP	144h	Commissioning of the new correlator Start of the deep integration phase (09/20)	Correlator First remote
2	2021 S1	NCP	357h	Deep integration on the NCP field	Station
Phase		3C196 / ELAIS-N1	8h	Polarized emission analysis Comparison with NCP field	2 nd and 3 rd remote station + many more core stations
	2021 S2	NCP	268h	Deep integration on the NCP field	
	2022 S1+S2	NCP	TBD	Deep integration on the NCP field	4 th remote station

NenuFAR processing pipeline

Pre-processing pipeline

- Being automatized
- ~ 30h for 8h obs on 4 copper nodes

Calibration pipeline

- Calibration tools public: https://gitlab.com/flomertens/ nenucal-cd
- Catalog sky model is being replaced now that we have 3 remote stations.
- DD-calibration possible when we have 4 remote stations
- ML-GPR is being developed for LOFAR-EoR.

Phase 1 results: diffuse emission

Phase 2: data quality check

Phase 2: data quality check

Phase 2: new remote stations - Before

Phase 2: new remote stations - After

Impact of remote Jec [Deg] MAs on calibration

 10^{-5}

40

59 MA

60 Frequency [MHz]

50

w/o remote

with remote

70

with remote + deeper sky model

80

- Longer baselines:
- higher angular resolution
- Iower confusion noise.
- more detectable sources.
- deeper sky-model.
- more constraint in calibration both because of the deeper sky model & the extra (long) baselines.
- Can calibrate in more directions.

Upcoming remote stations

At 80 MHz

Resolution: 4 arcmin Conf. Noise ~ 40mJy/PSF

At 60 MHz

U [meter]

Resolution: 5.4 arcmin Conf. Noise ~ 85mJy/PSF

No major improvement in baseline length

Better uv-coverage especially for shorter observation (or lower dec).

Done, current and next steps

Phase 1:

- **Done:** Total intensity and polarized dffuse emission analysis of the NCP field.
 - Ionospheric analysis.
 - RFI analysis (near-field imaging).

Phase 2:

- **Done:** Pre-processing & calibration pipeline.
 - First images with 1-3 remote stations.
- Ongoing: Deeper NCP sky model (with Satyapan).
 - Check systematics in power-spectra and data selection criteria.
 - Polarized emission analysis of NCP, 3C196 and ELAIS-N1 fields (with V.Jelic).

- Next:
- DD-calibration (with Satyapan).
 - Have the the primary beam in DPPP !!
 - Adapt ML-GPR for NenuFAR data.
- Investigate other calibration technique.