NenuFAR pulsar KP (ES03)

J.-M. Griebmeier for the NenuFAR Pulsar Key Programme
LPC2E & OSUC Orléans
jean-mathias.griebmeier@cnrs-orleans.fr
Outline

• KP team
• NenuFAR pulsar hardware + software
• Scientific context
• Observations & first results
KP Team

• Jean-Mathias Grießmeier, Gilles Theureau (PIs)
• Anna Bilous, Louis Bondonneau, Mark Brionne, Ismaël Cognard, Gemma Janssen, Julian Donner, Lucas Guillemot, Krishnakumar M.A., James McKee, David McKenna, Michael Kramer, Vlad Kondratiev, Robert Main, Aris Noutsos, Jérôme Petri, Maura Pilia, Andrea Possenti, Macej Serylak, Golam Shaifullah, Caterina Tiburzi, Oleg Ulyanov, Joris Verbiest, Ziwei Wu, Olaf Wucknitz, Serge Yerin, Vyacheslav Zakharenko

• open for new team members!
Pulsars

- Rotating neutron star
 - Mass of ~ 1.4 M\odot
 - Diameter of ~ 14 km
 - Period of rotation ~ 1 s
 - Curvature radiation from magnetic poles \rightarrow radio beam
 - Emission is always « on »; visible 1/rotation « lighthouse effect »
 - Average pulse \neq individual pulse

22 s time series
NenuFAR as stand-alone phased array

targets: compact sources

data products: → light-curves
 → dynamic spectra
 → pulsar data

| NenuFAR ES1: Cosmic Dawn |
| NenuFAR ES2: Exoplanets & Stars |
| NenuFAR ES3: Pulsars |
| NenuFAR ES4: Transients |
| NenuFAR ES5: Fast Radio Bursts |
| NenuFAR ES6: Planetary Lightning |
| NenuFAR ES7: Jupiter joint studies |
| NenuFAR ES8: Cluster of galaxies & AGNs |
| NenuFAR ES9: Cluster Filament & Cosmic Magnetism |
| NenuFAR ES10: Radio recombination lines |
| NenuFAR ES11: Sun |
| NenuFAR ES12: Radio Gamma |
| NenuFAR ES13: SETI |
| NenuFAR ES14: Cas A |
| NenuFAR ES15: Large Scale Background Survey |
| NenuFAR ES16: Formation of students |
| NenuFAR ES17: Radio-Amateurs |
NenuFAR pulsar hardware

real-time pulsar backend

"LUPPI" (10-85 MHz)

- folding
- coherent de-dispersion
- coherent correction of Faraday rotation

(Unique to NenuFAR!)

[See presentation by Louis Bonduanneau]!

[Bondonneau et al. 2021]

[Bondonneau et al. 2021; Bondonneau et al. in prep.]
NenuFAR pulsar software

- NenuFAR (UnDypPuTeD backend)
 - tf
 - dynamic spectra data (*.spectra)
 - waveform TF (*.raw)
- waveform (filesize compressed to ~60%) for O. Wucknitz (*.zst)
- LUPPI
 - coherent dedispersion
- singlepulse/search data (32 bit *.fits)
- folded data (psrfits, *.fits, default: 10.737s)
- presto filterbank data (*.fbk)
 - conversion volume/16
 - data
 - testlook

See presentation by Louis Bondonneau!
Pulsars at low frequencies

- turnover at 100-140 MHz for many pulsars
- high sky temperature (galactic background)
- strong dispersion, scattering, scintillation, ...

→ difficult to observe
→ high precision on DM, scattering, ...
→ RFM model: study high altitudes & large volume in magnetosphere
→ test emission models, ...

Radio-spectrum of PSR B1508+55 (added with LOFAR FR606 measurements)
NenuFAR pulsars projects

- regular NenuFAR observations since 07/2019
- some observations during commissioning
- >3000 observations (~1000h)
- 15 projects
- NenuFAR alone
- with other radio-telescopes

<table>
<thead>
<tr>
<th>project</th>
<th>targets</th>
<th>progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blind survey</td>
<td>DEC > 39°</td>
<td>observations: ongoing (1st pass observed); analysis: ongoing</td>
</tr>
<tr>
<td>Census</td>
<td>DEC > -20°, DM < 100</td>
<td>observations: done; analysis: ongoing (187 pulsars detected)</td>
</tr>
<tr>
<td>Census high DM</td>
<td>DEC > -20°, 100 < DM < 200</td>
<td>observations: done; analysis: pending (3 tentative detections)</td>
</tr>
<tr>
<td>Eclipsing Binaries</td>
<td>8 pulsars with orbits shorter than 10h; observations in waveform mode</td>
<td>observations: net started; analysis: not started</td>
</tr>
<tr>
<td>Giant Pulse/ISM</td>
<td>B1937-21 and 1957-20; observations in waveform mode, simultaneously with NRT</td>
<td>observations: done; analysis: not started</td>
</tr>
<tr>
<td>Globular Clusters</td>
<td>10 globular clusters; waveform observations</td>
<td>observations: done; analysis: ongoing</td>
</tr>
<tr>
<td>Monitoring of bright sources</td>
<td>41 pulsars, observed monthly since 02/2019; DM variations, flux variations, spectral energy distribution and turnover; comparison to theory (J. Petry)</td>
<td>observations: ongoing; analysis: pending</td>
</tr>
<tr>
<td>Polarisation study</td>
<td>108 pulsars in 94 paintings (30h); requires polarisation calibration; comparison to theory (J. Petry); will use coherent Fastday detection</td>
<td>observations: net started; analysis: not started</td>
</tr>
<tr>
<td>PTA MSP DM monitoring</td>
<td>4 pulsars observed simultaneously with NRT twice per month since 07/2019</td>
<td>observations: ongoing; analysis: pending</td>
</tr>
<tr>
<td>Scintillation studies</td>
<td>11 targets; requires observations in waveform mode; pipeline not ready</td>
<td>observations: a few observations taken; analysis: pending</td>
</tr>
<tr>
<td>Single Pulse</td>
<td>62 targets; 14 targets observed simultaneously with NRT; energy distribution, mode changes; drifting Subpulses; comparison to theory (J. Petry)</td>
<td>observations: done; analysis: ongoing; Bilous et al. in press (2021)</td>
</tr>
<tr>
<td>Slow pulsar</td>
<td>J0250+5854; simult. obs. with UTR planned</td>
<td>observations: done/pending; analysis: done/pending; Agar et al. 2021</td>
</tr>
<tr>
<td>Solar Wind</td>
<td>16 pulsars observed close to solar conjunction since 07/2019; two dense campaigns for J1022+1001</td>
<td>observations: ongoing; analysis: ongoing for J1022+1001; Tchorz et al. submitted</td>
</tr>
<tr>
<td>RRATs</td>
<td>phase 1: 28 sources (CHIME, GHT and Pushchino sources), 60-90 minutes each. Aim: detection. Can be extended to the study of spectral energy distribution of single pulses</td>
<td>observations: ongoing; analysis: ongoing</td>
</tr>
<tr>
<td>VLBI</td>
<td>observations of B1508+55 every 6-7 weeks, simultaneously with LOFAR</td>
<td>observations: ongoing until 2021-12; analysis: pending</td>
</tr>
</tbody>
</table>
Pulsar census

- observation of 711 pulsars known at higher radio frequencies
- DEC > -20°, DM < 100 pc/cm³
- 184 pulsar detected (~100 for the first time <100 MHz)

[Bondonneau et al. in prep.]
Pulsar census & MSPs

- Observation of 711 pulsars known at higher radio frequencies
- DEC > -20°, DM < 100 pc/cm³
- 184 pulsar detected (~100 for the first time <100 MHz)
- 11 MSPs detected (7 for the first time <100 MHz)
- [Bondonneau et al. in prep.]
• observation of 711 pulsars known at higher radio frequencies
• DEC > -20°, DM < 100 pc/cm³
• 184 pulsar detected (~100 for the first time <100 MHz)
• 11 MSPs detected (7 for the first time <100 MHz)
• [Bondonneau et al. in prep.]
• study of pulsar spectra, turnover, ... (e.g. [Agar et al. 2021])
Pulsar blind survey

- survey of north polar cap (DEC > 39°)
- 7691 pointings
- observations since August 2020 (1st pass complete)
- search space: DM < 100 pc/cm³ & P > 80 ms
- expect slow pulsars [Tan et al. 2018]
- [Brionne et al. in prep.]
Single pulses & giant pulses

Single pulses

B1237+25

Study of giant pulses

B0950+08

[Kondratiev et al. in prep.]

[Bilous et al. in press]

Frequency evolution of single pulses at low frequency: Radius-to-frequency mapping

Characterisation of single pulses from B0950+08.
Ionized interstellar medium

- high sensitivity & low frequencies
- → precision of 10^{-4} or even 10^{-5} pc/cm3 on DM
- [Bondonneau et al. 2021]
- → DM monitoring, statistics of DM events
- → improve timing (e.g. for pulsar timing arrays)
- long-term project!
Heliosphere

- DM contribution of solar wind
- observation near solar conjunction
- wider signal path at low frequencies [Cordes et al. 2016]
- → expect frequency-dependent DM
- different DM observed LOFAR-HBA ↔ NenuFAR
 → more observations taken 2021/08-2021/09, under analysis
- [Tiburzi et al. submitted; Shaifullah et al. in prep.]
• high sensitivity, **coherent Faraday correction**, low frequencies
• \rightarrow precision of 10^{-5} to 10^{-4} rad/m2 on RM
• 100 times more accurate than existing ionospheric models
• \rightarrow can be used to compare ionospheric models
• [Bondonneau et al. in prep.]
NenuFAR pulsars projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Targets</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blind survey</td>
<td>DEC > 39°</td>
<td>observations: ongoing (1st pass observed) analysis: ongoing</td>
</tr>
<tr>
<td>Census (including LOPSS + low DECO)</td>
<td>DEC > -20°, DM < 100</td>
<td>observations: done analysis: ongoing (187 pulsars detected) Bondonneau et al. in prep.</td>
</tr>
<tr>
<td>Census high DM</td>
<td>DEC > -20°, 100 < DM < 200</td>
<td>observations: done analysis pending (3 tentative detections)</td>
</tr>
<tr>
<td>Eclipsing Binaries</td>
<td>8 pulsars with orbits shorter than 10h; observations in waveform mode</td>
<td>observations: not started analysis: not started</td>
</tr>
<tr>
<td>Giant Pulses/ISM</td>
<td>B1937-21 and 1957-20; observations in waveform mode, simultaneously with NRT</td>
<td>observations: done analysis: not started</td>
</tr>
<tr>
<td>Globular Clusters</td>
<td>10 globular clusters; waveform observations</td>
<td>observations: done analysis: ongoing</td>
</tr>
<tr>
<td>Monitoring of bright sources</td>
<td>41 pulsars, observed monthly since 02/2019; DM variations, flux variations, spectral energy distribution and turnover; comparison to theory (J. Perry)</td>
<td>observations: ongoing analysis: pending</td>
</tr>
<tr>
<td>Polarisation study</td>
<td>108 pulsars in 59 paintings (30h); requires polarisation calibration; comparison to theory (J. Perry); will use coherent Fabry-Perot etal.</td>
<td>observations: not started analysis: not started</td>
</tr>
<tr>
<td>PTA MSP DM monitoring</td>
<td>4 pulsars observed simultaneously with NRT twice per month since 07/2019</td>
<td>observations: ongoing analysis: pending</td>
</tr>
<tr>
<td>Scintillation studies</td>
<td>11 targets; requires observations in waveform mode; pipeline not ready</td>
<td>observations: a few modes; observations taken analysis: pending</td>
</tr>
<tr>
<td>Single Pulse</td>
<td>62 targets; 14 targets observed simultaneously with NRT; energy distribution, mode changes; drifting Subpulses; comparison to theory (J. Perry)</td>
<td>observations: done analysis: ongoing Bilous et al. in press (2021)</td>
</tr>
<tr>
<td>Slow pulsar</td>
<td>J0250+5554:avail. obs. with LTR planned</td>
<td>observations: done/pending analysis: pending Agar et al. 2021</td>
</tr>
<tr>
<td>Solar Wind</td>
<td>16 pulsars observed close to solar conjunction since 07/2019; two dense campaigns for J1022+1001</td>
<td>observations: ongoing analysis: ongoing for J1022+1001 Tiburzi et al. submitted</td>
</tr>
<tr>
<td>RRATs</td>
<td>phase: 1-28 sources (CHIME, GBT and Pushchino sources), 60-90 minutes each. Aim: detection. Can be extended to the study of spectral energy distribution of single pulses</td>
<td>observations: ongoing analysis: ongoing</td>
</tr>
<tr>
<td>VLBI</td>
<td>observations of B1508+55 every 6-7 weeks, simultaneously with LOFAR</td>
<td>observations: ongoing until 2021-12 analysis: pending</td>
</tr>
</tbody>
</table>

[Bondonneau et al. in prep.]
[Bondonneau et al. 2021; Bondonneau et al. in prep.]
[Bilous et al. in press; Kondratiev et al. in prep.]
[Agar et al. 2021]
[Tiburzi et al. submitted; Shaifullah et al. in prep.]
... and more in preparation!

- Monitoring campaign
 - Spectra
 - DM monitoring

- Scintillation studies
 - Monitoring
 - Test of scintillation laws

- Globular clusters
 - Population

- Single pulses
 - Nulling
 - Mode switching
 - Drifting subpulses

- VLBI
 - Scintillation/pulse echoes

- Polarisation
 - Polarisation fraction
 - Profiles